Best *L*₁-Approximation by Generalized Convex Functions

D. ZWICK

Department of Mathematics, University of Vermont, Burlington, Vermont 05405, U.S.A.

Communicated by Oved Shisha

Received May 30, 1988

Let $\{u_0, ..., u_{n-1}\}$ be an ECT-system and let $C(u_0, ..., u_{n-1})$ be its generalized convexity cone. We give a precise description of best L_1 -approximations to continuous functions from $C(u_0, ..., u_{n-1})$. These best approximations are, piecewise, certain extremal Chebyshevian splines, which are obtained by applying results from moment theory for Chebyshev systems. © 1989 Academic Press, Inc.

Let $\omega_1, ..., \omega_n$ $(n \ge 2)$ be *n*-times continuously differentiable, strictly positive functions defined on the real interval (α, β) and let $a \in (\alpha, \beta)$ be fixed. We define an *extended complete Chebyshev system* (ECT-system) $\{u_0, ..., u_{n-1}\}$ by

$$u_{0}(x) = \omega_{n}(x),$$

$$u_{1}(x) = \omega_{n}(x) \int_{a}^{x} \omega_{n-1}(\xi_{n-1}) d\xi_{n-1},$$

$$\vdots$$

$$u_{n-1}(x) = \omega_{n}(x) \int_{a}^{x} \omega_{n-1}(\xi_{n-1}) \int_{a}^{\xi_{n-1}} \cdots \int_{a}^{\xi_{2}} \omega_{1}(\xi_{1}) d\xi_{1} \cdots d\xi_{n-1}.$$

This is, in fact, an ECT⁺-system; i.e., all of the Wronskians $W[u_0, ..., u_i]$ are strictly positive for i=0, ..., n-1. ECT-systems, which are related to the notion of extended total positivity, were extensively investigated in [5, Chap. XI; 4, Chap. 6]; another good source is [9, Chap. 9]. In approximation theory their importance lies in the fact that they share many of the properties of algebraic polynomials (which may be constructed in this way by making all the ω_i constant). Associated with this system of functions is a sequence of differential operators: $L_i := (1/\omega_{n-i})D\cdots D(1/\omega_n)$ (i=0,...,n-1), D := d/dx. Setting $L := D(1/\omega_1)\cdots D(1/\omega_n)$ we see that $U := \text{span}\{u_0, ..., u_{n-1}\}$ is the nullspace of the disconjugate differential operator L.

DEFINITION 1. A function φ is generalized convex with respect to the ECT-system $\{u_0, ..., u_{n-1}\}$ if the "augmented generalized Vandermonde" determinant

$u_0(x_0)$	• • •	$u_0(x_n)$
$u_1(x_0)$	• • •	$u_1(x_n)$
:		÷
$u_{n-1}(0)$	•••	$u_{n-1}(x_n)$
$\varphi(x_0)$	• • •	$\varphi(x_n)$

is nonnegative for all $\alpha < x_0 < \cdots < x_n < \beta$.

This set of generalized convex functions is a convex cone and is denoted by $C(u_0, ..., u_{n-1})$. Generalized convex functions enjoy certain differentiability properties as described in [5, 1]. In particular, their (n-2)nd derivatives are continuous. If we define

$$L_{n-1}^{\pm} := \frac{1}{\omega_1} D^{\pm} \frac{1}{\omega_2} D \cdots D \frac{1}{\omega_n}$$

then, for $\varphi \in C(u_0, ..., u_{n-1})$, $L_{n-1}^+\varphi$ is right-continuous and nondecreasing and $L_{n-1}^-\varphi$ is left-continuous and nondecreasing. To a generalized convex function φ we may associate a nonnegative, regular Borel measure μ on (α, β) by setting $\mu([c, d]) = L_{n-1}^+\varphi(d) - L_{n-1}^-\varphi(c) \ge 0$. Then on any interval $[a, b] \subset (\alpha, \beta)$ we have the representation

$$\varphi(x) = u(x) + \int_{[a,b]} K_n(x,t) \, d\mu(t), \qquad x \in [a,b], \tag{1}$$

with

$$u(x) = \sum_{i=0}^{n-2} (L_i \varphi)(a) u_i(x) + (L_{n-1}^{-} \varphi)(a) u_{n-1}(x),$$

and K_n as defined below. This representation may be extended to all of $[\alpha, \beta)$ only if both of $L_{n-1}^{\pm}\varphi$ are bounded in (α, β) . However, the set of generalized convex functions with such representations on $[\alpha, \beta]$ is (uniformly) dense in $C(u_0, ..., u_{n-1})$ [5].

DEFINITION 2. Let $f \in L_1([\alpha, \beta] \text{ and } g \in C(u_0, ..., u_{n-1}) \cap L_1[\alpha, \beta]$ be given. Then g is a best L_1 -approximation for f from $C(u_0, ..., u_{n-1})$ if

$$\|f-g\|_{1} := \int_{\alpha}^{\beta} |f(x)-g(x)| \, dx = \inf\{\|f-\varphi\|_{1} : \varphi \in C(u_{0}, ..., u_{n-1})\}.$$

The concept of the "dual system" to an ECT-system will be important in our considerations. The dual system is a basis for the nullspace of the formal adjoint of L, which is given by $L^* = (-1)^n (1/\omega_n) D \cdots (1/\omega_1) D$, D := d/dt. One such basis is

$$u_{0}^{*}(t) \equiv 1,$$

$$u_{1}^{*}(t) = \int_{t}^{b} \omega_{1}(\xi_{1}) d\xi_{1},$$

$$\vdots$$

$$u_{n-1}^{*}(t) = \int_{t}^{b} \omega_{1}(\xi_{1}) \int_{\xi_{1}}^{b} \cdots \int_{\xi_{n-2}}^{b} \omega_{n-1}(\xi_{n-1}) d\xi_{n-1} \cdots d\xi_{1}.$$

Now $\{u_0^*, ..., u_{n-1}^*\}$ is an ECT-system, but not an ECT⁺-system; however, it may be transformed by a change of basis into the following (dual) ECT⁺-system:

$$v_{0}(t) \equiv 1,$$

$$v_{1}(t) = \int_{a}^{t} \omega_{1}(\xi_{1}) d\xi_{1},$$

$$\vdots$$

$$v_{n-1}(t) = \int_{a}^{t} \omega_{1}(\xi_{1}) \int_{a}^{\xi_{1}} \cdots \int_{a}^{\xi_{n-2}} \omega_{n-1}(\xi_{n-1}) d\xi_{n-1} \cdots d\xi_{1}$$

Both of these dual systems play a role in the proof of Theorem 1.

In order to introduce the notion of Chebyshevian spline, we first define the *fundamental kernel*, the Green function for L([9], [5]):

$$K_{n}(x, t) = \omega_{n}(x) \int_{t}^{x} \omega_{n-1}(\xi_{n-1}) \int_{t}^{\xi_{n-1}} \cdots \int_{t}^{\xi_{2}} \omega_{1}(\xi_{1}) d\xi_{1} \cdots d\xi_{n-1}, \qquad t \le x$$

= 0, $t > x.$

A Chebyshevian spline is a function of the form

$$s(x) = u(x) + \sum_{i=0}^{k+1} \alpha_i K_n(x, \tau_i),$$
 (2)

with knots $\alpha < \tau_0 < \cdots < \tau_{k+1} < \beta$ and $u \in U$. Like polynomial splines, Chebyshevian splines are (n-2)-times continuously differentiable and have jump discontinuities in the (n-1)st derivative at the τ_i (provided the corresponding α_i is not zero).

THEOREM 1. Let ω_i , u_i , and (α, β) be as above and let $g \in C(u_0, ..., u_{n-1})$ be given. If [a, b] is contained in (α, β) then there are Chebyshevian splines \underline{s} and \overline{s} on (α, β) , such that if $\varphi \in C(u_0, ..., u_{n-1})$ coincides with g in $(\alpha, \beta) \setminus (a, b)$ then

$$\underline{s}(x) \leq \varphi(x) \leq \overline{s}(x), \qquad x \in [a, b].$$

These extremal splines have the form (2) with

$$u(x) = \sum_{i=0}^{n-2} (L_i g)(a)(u_i(x) + (L_{n-1}^- g)(a)u_{n-1}(x)).$$

Furthermore, \underline{s} and \overline{s} are unique in [a, b] and we have:

n even: For \bar{s} , k = n/2 - 1, $a = \tau_0 < \tau_1 < \cdots < \tau_{k+1} = b$; for \underline{s} , k = n/2, $a < \tau_1 < \cdots < \tau_k < b$, $\alpha_0 = \alpha_{k+1} = 0$;

n odd: For $\bar{s}, k = (n-1)/2, \ \alpha = \tau_0 < \tau_1 < \cdots < \tau_k < b, \ \alpha_{k+1} = 0;$ for $\underline{s}, k = (n-1)/2, \ \alpha < \tau_1 < \cdots < \tau_{k+1} = b, \ \alpha_0 = 0.$

The Chebyshevian splines \underline{s} and \overline{s} will be referred to as *lower* and *upper* extremal splines, respectively. Thus, \underline{s} and \overline{s} form the boundary of the "interpolating envelope" on [a, b] of generalized convex functions that agree with g outside of (a, b).

EXAMPLES. For n=2 and $\omega_i \equiv 1$, a generalized convex function g is convex in the usual sense. In this case the upper extremal spline \bar{s} for an interval [a, b] is just the linear polynomial interpolant, and the lower extremal spline \underline{s} is the piecewise linear function with at most one knot, which agrees with g at the endpoints and satisfies $\underline{s}'(a) = g'_{-}(a)$, $\underline{s}'(b) = g'_{+}(b)$. The interpolating envelope in this case is, thus, a triangle (see [3]).

In the next example, n=3, $\omega_i \equiv 1$, and [a, b] = [-1, 1], so that $U = \text{span}\{1, (x+1), (x+1)^2/2\}$ and $g(x) = x^3 - x$ is generalized convex ("3-convex"). The upper and lower extremal splines in this case are quadratic polynomial splines with two knots each. Figure 1 shows <u>s</u> and <u>s</u> restricted to [-1, 1].

Proof of Theorem 1. If φ agrees with g outside of (a, b) then φ may be

FIG. 1. Example of an interpolating envelope for n = 3.

represented as in (1) with u as in the statement of the theorem, and with μ satisfying

$$\int_{[a,b]} u_0^*(t) \, d\mu(t) = \int_{[a,b]} 1 \, d\mu(t) = \mu([a,b]) = L_{n-1}^+ g(b) - L_{n-1}^- g(a).$$
(3)

Moreover,

$$\int_{[a,b]} u_{n-1-i}^{*}(t) d\mu(t) = \int_{[a,b]} (L_i K_n)(b, t) d\mu(t)$$
$$= L_i(\varphi - u)(b) = L_i(g - u)(b) \qquad (i = 0, ..., n - 2).$$

Thus, this interpolation problem may be transformed into a moment problem for the dual ECT⁺-system $\{v_0, ..., v_{n-1}\}$:

$$\int_{a}^{b} v_{i}(t) d\mu(t) = c_{i} \qquad (i = 0, ..., n-1).$$
(4)

Let M_c denote the set of nonnegative Borel measures for which the moment conditions (4) are satisfied. Since an ECT-system is also a Chebyshev system, by the Markov-Krein Theorem [5, 6, 7] there are

unique extremal measures μ and $\overline{\mu}$ in M_c such that for all $\mu \in M_c$ and all $\psi \in C(v_0, ..., v_{n-1})$

$$\int_{[a,b]} \psi(t) \, d\underline{\mu}(t) \leqslant \int_{[a,b]} \psi(t) \, d\mu(t) \leqslant \int_{[a,b]} \psi(t) \, d\overline{\mu}(t). \tag{5}$$

These extremal measures are discrete measures with mass distributed as follows:

n even: $\bar{\mu}$ has mass at *a* and at *b*, and at k = n/2 - 1 intermediate points; μ has mass only at k = n/2 intermediate points;

n odd: $\bar{\mu}$ has no mass at *a*, and has mass at *b* and at k = (n-1)/2 intermediate points; μ has no mass at *b* and has mass at *a* and at k = (n-1)/2 intermediate points.

It should be mentioned that these conclusions are valid provided μ has sufficient number of mass points ("index n" [6]); otherwise, g is a spline on [a, b] and $\underline{s}, \overline{s}$ and g all coincide.

Functions $\psi \in C(v_0, ..., v_{n-1})$ have the representation

$$\psi(t) = v(t) + \int_{[a,b]} (-1)^n K_n(x,t) \, d\mu(x), \qquad t \in [a,b],$$

with $v \in \text{span}\{v_0, ..., v_{n-1}\}$ and μ a nonnegative Borel measure. In particular, for fixed x the function $\psi(t) := (-1)^n K_n(x, t)$ is an element of $C(v_0, ..., v_{n-1})$ and therefore (5) holds. The proof is now completed by adding $(-1)^n u(x)$ to each term of (5) and setting

$$\underline{s}(x) := u(x) + \int_{[a,b]} K_n(x,t) \, d\underline{\mu}(t), \qquad \bar{s}(x) := u(x) + \int_{[a,b]} K_n(x,t) \, d\overline{\mu}(t)$$

if *n* is even, and vice versa if *n* is odd.

Remark 1. It can be shown that the knots of \underline{s} and \overline{s} strictly interlace.

A simple consequence of (1) and the definition of K_n is the following estimate:

PROPOSITION 1. Let the conditions and conclusions of Theorem 1 prevail. Then, for all $a \leq r \leq q \leq b$ and $x \in [r, q]$,

$$0 \leq \overline{s}(x) - \underline{s}(x) \leq K \frac{(q-r)^{n-1}}{(n-1)!} \prod_{i=1}^{n} m_i,$$

where $K = L_{n-1}^+ g(b) - L_{n-1}^- g(a) < \infty$ and $m_i = \max_{[a,b]} |\omega_i|$.

We now prove the main theorem of this paper.

THEOREM 2. Let f be continuous in (α, β) and let g be generalized convex on (α, β) with respect to $\{u_0, ..., u_{n-1}\}$. If g is a best L_1 -approximation to f then in every closed subinterval I of (α, β) there exist disoint open sets E_1, E_2 such that g < f and g is an upper extremal Chebyshevian spline on each connected component of E_1 , g > f and g is a lower extremal Chebyshevian spline on each connected component of E_2 , and g = f in $I \setminus (E_1 \cup E_2)$.

Proof. Let (a, b) be a connected component of the (relatively) open set $I \cap \{f > g\}$ and let $[c, d] \subset (a, b)$ be arbitrary. Let u[c, d] denote the generalized convex function that coincides with the upper extremal spline \bar{s} for g on [c, d] and equals g outside of [c, d]. For $\lambda > 0$ set

$$g_{\lambda} := (1-\lambda)g + \lambda u[c, d].$$

Thus, $g_{\lambda} \equiv g$ outside of [c, d]. We have

$$0 \leq g_{\lambda} - g = \lambda(u[c, d] - g,$$

hence for small enough λ we have $f > g_{\lambda} \ge g$ in [c, d]. If there exists a point $y \in [c, d]$ such that u[c, d](y) > g(y), then $||f - g_{\lambda}||_1 < ||f - g||_1$, a contradiction to the assumption that g is a best approximation. The proof is completed by applying an analogous argument to connected components of $I \cap \{f < g\}$.

Remark 2. Suppose that the ω_i are bounded. If f is bounded then its best approximation g must be bounded as well. Otherwise, by extrapolation of g to an endpoint by an element of U we can construct a closer approximation to f.

We close with a few comments. For the case when all ω_i are constant (polynomial case), a description of the upper and lower extremal splines was given by Popoviciu [8]. The extremal splines that form the interpolating envelope for a sequence of *distinct* points in the general case were described by Burchard [2, 1]. In this case moment theory for weak Chebyshev systems is needed (see also [7]). Thus, our technique in proving Theorem 1 cannot be considered new. Our proof is, however, made somewhat shorter than previous ones by using the precise results from moment theory expounded in [6]. Outside of the preliminary findings in [3, 10], we are unaware of results similar to Theorem 2 in the literature.

We have not considered the problems of existence and uniqueness in this paper. Based on our experience with convex and *n*-convex functions, we conjecture that every function, continuous on a compact interval, has a unique, continuous best generalized convex L_1 -approximation.

BEST L_1 -APPROXIMATION

References

- 1. H.G. BURCHARD, Extremal positive splines with applications to interpolation and approximation by Generalized convex functions, *Bull. Amer. Math. Soc.* **79** (1973), 959–964.
- 2. H. G. BURCHARD, "Interpolation and Approximation by Generalized Convex Functions," Dissertation, Purdue University, 1968.
- 3. R. HUOTARI AND D. ZWICK, Approximation in the mean by convex functions, Numer. Funct. Anal. Optim., in press.
- 4. S. KARLIN, "Total Positivity," Stanford Univ. Press, Stanford, CA, 1968.
- 5. S. KARLIN AND W. J. STUDDEN, "Tchebycheff Systems: With Applications in Analysis and Statistics," Wiley-Interscience, New York, 1966.
- 6. M. G. KREIN AND A. A. NUDEL'MAN, "The Markov Moment Problem and Extremal Problems," A.M.S. Translations, New York, 1977.
- 7. C. A. MICCHELLI AND A. PINKUS, Moment theory for weak Chebyshev systems with applications to monosplines, quadrature formulae and best one-sided L^1 -approximation by spline functions with fixed knots, *SIAM J. Math. Anal.* 8 (1977), 206–225.
- T. POPOVICIU, Sur le prolongement des fonctions convexes d'ordre supérieur, Bull. Math. Soc. Sci. Math. R.S. (N.S.) Roumanie 36 (1934), 75-108.
- 9. L. SCHUMAKER, "Spline Functions: Basic Theory," Wiley, New York, 1981.
- D. ZWICK, Characterizing shape preserving L₁-approximation, Proc. Amer. Math. Soc. 103 (1988), 1139–1146.