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Let {uo• ..., un-d be an ECT-system and let quo ...., un_d be its generalized
convexity cone. We give a precise description of best Lt-approximations to
continuous functions from quo•.... un _ d. These best approximations are,
piecewise. certain extremal Chebyshevian splines, which are obtained by applying
results from moment theory for Chebyshev systems. © 1989 Academic Press, Inc.

Let WI' ..., W n (n ~ 2) be n-times continuously differentiable, strictly
positive functions defined on the real interval ((1, {3) and let aE ((1, {3)
be fixed. We define an extended complete Chebyshev system (ECT-system)
{uo, ..., un-d by

Uo(X) = wn(x),

uI(x)=wn(x)rWn-I(~n-dd~n-I'
a

This is, in fact, an ECT + -system; i.e., all of the Wronskians W[uo, ..., ui ]

are strictly positive for i = 0, ..., n - 1. ECT-systems, which are related to
the notion of extended total positivity, were extensively investigated in [5,
Chap. XI; 4, Chap. 6]; another good source is [9, Chap. 9]. In approxima
tion theory their importance lies in the fact that they share many of the
properties of algebraic polynomials (which may be constructed in this way
by making all the Wi constant). Associated with this system of functions is
a sequence of differential operators: Li:=(l/wn_i)D···D(l/wn)
(i=O, ...,n-l), D:=d/dx. Setting L:=D(l/wd .. ·D(l/wn) we see that

116
0021-9045/89 $3.00
Copyright © 1989 by Academic Press, Inc.
All rights of reproduction in any form reserved.



BEST LI-APPROXIMATION 117

U := span {Uo, ..., Un _ I} is the nullspace of the disconjugate differential
operator L.

DEFINITION 1. A function qJ is generalized convex with respect to the
ECT-system {uo, ..., Un-I} if the "augmented generalized Vandermonde"
determinant

Uo(Xo) UO(xn)

UI(XO) UI(Xn)

un-I(o) Un_I(Xn)

qJ(xo) qJ(xn)

is nonnegative for all IX < Xo < ... < Xn< f3.

This set of generalized convex functions is a convex cone and is denoted
by quo, ..., Un _ d. Generalized convex functions enjoy certain differen
tiability properties as described in [5, I]. In particular, their (n - 2)nd
derivatives are continuous. If we define

+ 1 + 1 1
L;;_I :=-D- -D .. ·D-

WI W z W n

then, for qJ E quo, ..., Un_ d, L;;_I qJ is right-continuous and nondecreasing
and L;;_I qJ is left-continuous and nondecreasing. To a generalized convex
function qJ we may associate a nonnegative, regular Borel measure II. on
(1X,f3) by setting 1I.([c,d])=L;;_lqJ(d)-L;;_lqJ(c)~O. Then on any
interval [a, b] c (IX, (3) we have the representation

with

qJ(X) = u(x) +f Kn(x, t) dll.(t),
[a,b]

XE [a, b], (1)

n-Z

u(x)= L (L;qJ)(a)u;(x) + (L;;_lqJ)(a)un_l(x),
;=0

and Kn as defined below. This representation may be extended to all of
[IX, (3) only if both of L!_I qJ are bounded in (IX, (3). However, the set of
generalized convex functions with such representations on [IX, f3] is
(uniformly) dense in quo, ..., Un _ d [5].
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DEFINITION 2. Let fEL t ([IX,f3] and gEC(uo, ...,un_dnL t [IX,f3] be
given. Then g is a best Lt-approximation for ffrom C(uo, ..., Un_ d if

Ilf- gilt :=rIf(x) - g(x)1 dx = inf{ Ilf- <P1It: <P E C(Uo, ..., un_ d}·,

The concept of the "dual system" to an ECT-system will be important in
our considerations. The dual system is a basis for the nullspace of the
formal adjoint of L, which is given by L* = (-1 t(l/wn )D··· (llw j )D,
D := dldt. One such basis is

ut(t) == 1,

ut(t)=rwt(~dd~l'

Now rut, ...,u~-d is an ECT-system, but not an ECT+-system; however,
it may be transformed by a change of basis into the following (dual)
ECT+ -system:

vo(t) == 1,

vt(t) =rwt(~d d~t,
Q

Both of these dual systems playa role in the proof of Theorem 1.
In order to introduce the notion of Chebyshevian spline, we first define

the fundamental kernel, the Green function for L([9], [5]):

=0,

A Chebyshevian spline is a function of the form

k+t
s(x) = u(x) + L IX;Kn(x, r;),

;=0

t~x

t>x.

(2)
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with knots C< < r 0 < ... < rk+I < {3 and u E U. Like polynomial splines,
Chebyshevian splines are (n - 2)-times continuously differentiable and have
jump discontinuities in the (n - 1)st derivative at the r i (provided the
corresponding C<i is not zero).

THEOREM 1. Let Wi' ui, and (c<, {3) be as above and let gE quo, ..., Un-I)
be given. If [a, b] is contained in (c<, {3) then there are Chebyshevian splines
§ and s on (c<, {3), such that if <p E quo, ..., un_ d coincides with g in
(c<, {3)\(a, b) then

§(x) ~ <p(x) ~ s(x), X E [a, b].

These extremal splines have the form (2) with

n-2

u(x) = L (L i g)(a)(ui(x) + (L;;_I g)(a)un-I (x).
i~O

Furthermore, § and s are unique in [a, b] and we have:

n even: For S, k=n/2-1, a=ro<r l < .. · <rk+l=b;for §,k=n/2,
a<r l < ... <rk<b, C<O=C<k+1 =0;

n odd: For s,k=(n-l)/2, c<=ro<r l <· .. <rk<b, C<k+I=O; for
§, k = (n - 1)/2, a < r I < ... < r k +I = b, C<o = o.

The Chebyshevian splines § and s will be referred to as lower and upper
extremal splines, respectively. Thus, § and s form the boundary of the
"interpolating envelope" on [a, b] of generalized convex functions that
agree with g outside of (a, b).

EXAMPLES. For n = 2 and Wi == 1, a generalized convex function g is
convex in the usual sense. In this case the upper extremal spline s for an
interval [a, b] is just the linear polynomial interpolant, and the lower
extremal spline § is the piecewise linear function with at most one knot,
which agrees with g at the endpoints and satisfies l(a) =g'_(a),
l (b) = g'+ (b). The interpolating envelope in this case is, thus, a triangle
(see [3]).

In the next example, n = 3, Wi == 1, and [a, b] = [ -1, 1], so that
U = span {1, (x + 1), (x + 1)2/2} and g(x) = x 3

- x is generalized convex
("3-convex"). The upper and lower extremal splines in this case are
quadratic polynomial splines with two knots each. Figure 1 shows § and s
restricted to [ -1, 1].

Proof of Theorem 1. If <p agrees with g outside of (a, b) then <p may be
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,
FIG. 1. Example of an interpolating envelope for n = 3.

represented as in (1) with u as in the statement of the theorem, and with
j1. satisfying

f uJ'(t)dj1.(t)=f 1 dj1.(t)=j1.([a,b])=L;;_1g(b)-L;;_lg(a). (3)
[a,b] [a,b]

Moreover,

f u:_ I _;(t) dj1.(t) = f (L;Kn)(b, t) dj1.(t)
[a,b] [a,b]

= L;( q; - u)(b) = L;(g - u)(b) (i = 0, .." n - 2),

(4)(i = 0, ..., n - 1).

Thus, this interpolation problem may be transformed into a moment
problem for the dual ECT + -system {vo, ..., Vn - d:

rv;(t) dj1.(t) = c;
a

Let Me denote the set of nonnegative Borel measures for which the
moment conditions (4) are satisfied. Since an ECT-system is also a
Chebyshev system, by the Markov-Krein Theorem [5,6, 7] there are
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unique extremal measures y and ji in Me such that for all J.l EMe and all
t/fEC(Vo, ..., vn-d

f l/J(t) dJ.l(t) ~ f l/J(t) dJ.l(t) ~ f l/J(t) dji(t). (5)
[a,b] - [a,b] [a,b]

These extremal measures are discrete measures with mass distributed as
follows:

n even: ji has mass at a and at b, and at k = nl2 - 1 intermediate
points; y has mass only at k = nl2 intermediate points;

n odd: ji has no mass at a, and has mass at b and at· k = (n - 1)/2
intermediate points; J.l has no mass at b and has mass at a and at
k = (n - 1)/2 intermedIate points.

It should be mentioned that these conclusions are valid provided J.l has
sufficient number of mass points ("index n" [6]); otherwise, g is a spline
on [a, b] and §, sand g all coincide.

Functions l/J EC(vo, ..., Vn _ d have the representation

t/f(t)=V(t)+ f (-It Kn(x, t)dJ.l(x),
[a,b]

tE [a, b],

with vEspan{vo, ..., vn-d and J.l a nonnegative Borel measure. In
particular, for fixed x the function l/J(t):= (-It Kn(x, t) is an element of
C(vo, ..., Vn _ d and therefore (5) holds. The proof is now completed by
adding ( - 1t u(x) to each term of (5) and setting

§(x) := u(x) +f Kn(x, t) dy(t),
[a,b]

s(x) := u(x) +f Kn(x, t) dji(t)
[a,b]

if n is even, and vice versa if n is odd. I

Remark 1. It can be shown that the knots of § and s strictly interlace.

A simple consequence of (1) and the definition of K n is the following
estimate:

PROPOSITION 1. Let the conditions and conclusions of Theorem 1 prevail.
Then, for all a ~ r ~ q ~ b and x E [r, q],

(q-rt-i n

O~s(x)-§(x)~K (n-1)! lJ mi ,

where K=L:_ig(b)-L;;_ig(a)< 00 and mi=maX[a,b] 1m;!.
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We now prove the main theorem of this paper.

THEOREM 2. Let f be continuous in (ct, f3) and let g be generalized convex
on (ct, f3) with respect to {uo, ..., Un _ d. If g is a best L I-approximation to f
then in every closed subinterval I of(ct, f3) there exist disoint open sets E I, E 2

such that g <f and g is an upper extremal Chebyshevian spline on each
connected component of E I' g > f and g is a lower extremal Chebyshevian
spline on each connected component of E 2 , and g = fin I\(EI u E 2 ).

Proof Let (a, b) be a connected component of the (relatively) open set
In {f> g} and let [c, d] c (a, b) be arbitrary. Let u[c, d] denote the
generalized convex function that coincides with the upper extremal spline
§ for g on [c, d] and equals g outside of [c, d]. For A> 0 set

gA := (1 - ),) g + AU[C, d].

Thus, gA =g outside of [c, d]. We have

O::::;gA -g=A(U[C, d] -g,

hence for small enough A we have f> g A ~ g in [c, d]. If there exists a point
yE [c, d] such that u[c, d](y»g(y), then Ilf-gAIII < Ilf-glll' a con
tradiction to the assumption that g is a best approximation. The proof is
completed by applying an analogous argument to connected components
of In {f< g }. I

Remark 2. Suppose that the Wi are bounded. If f is bounded then its
best approximation g must be bounded as well. Otherwise, by extrapola
tion of g to an endpoint by an element of U we can construct a closer
approximation to f

We close with a few comments. For the case when all Wi are constant
(polynomial case), a description of the upper and lower extremal splines
was given by Popoviciu [8]. The extremal splines that form the interpolat
ing envelope for a sequence of distinct points in the general case were
described by Burchard [2, 1]. In this case moment theory for weak
Chebyshev systems is needed (see also [7]). Thus, our technique in prov
ing Theorem 1 cannot be considered new. Our proof is, however, made
somewhat shorter than previous ones by using the precise results from
moment theory expounded in [6]. Outside of the preliminary findings in
[3, 10], we are unaware of results similar to Theorem 2 in the literature.

We have not considered the problems of existence and uniqueness in this
paper. Based on our experience with convex and n-convex functions, we
conjecture that every function, continuous on a compact interval, has a
unique, continuous best generalized convex LI-approximation.
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