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Let {uo,..,u,_,} be an ECT-system and let C(uy, .., u,_,) be its generalized
convexity cone. We give a precise description of best L,-approximations to
continuous functions from C(u,..,u,_;). These best approximations are,
piecewise, certain extremal Chebyshevian splines, which are obtained by applying
results from moment theory for Chebyshev systems.  © 1989 Academic Press, Inc.

Let w,,..,®, (n=2) be n-times continuously differentiable, strictly
positive functions defined on the real interval («, ) and let ae(a, B)
be fixed. We define an extended complete Chebyshev system (ECT-system)

{ugy s 4,1} by

uo(x) = w,(x),

11 (0) = 0,00) [ @,_1(Eu_ 1) ey,

x En—1i &2
Uy (D) =0,(0) [ @, () [ [ o) de

This is, in fact, an ECT *-system; i.e., all of the Wronskians WT{u, ..., ;]
are strictly positive for i=0, .., n— 1. ECT-systems, which are related to
the notion of extended total positivity, were extensively investigated in [5,
Chap. XI; 4, Chap. 6]; another good source is [9, Chap. 9]. In approxima-
tion theory their importance lies in the fact that they share many of the
properties of algebraic polynomials (which may be constructed in this way
by making all the w; constant). Associated with this system of functions is
a sequence of differential operators: L;:=(l/w,_;)D---D(l/w,)
(i=0,.,n—1), D:=d/dx. Setting L:=D(l/w,)---D(l/w,) we see that
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U :=span{u,, .., u,_,} is the nullspace of the disconjugate differential
operator L.

DrerFINITION 1. A function ¢ is generalized convex with respect to the
ECT-system {u, ..., u,_,} if the “augmented generalized Vandermonde”
determinant

ug(xe) --- up(x,)
u(xg) - uy(x,)
(o) oty (%)
@(xo) -+ o(x,)

is nonnegative for all x <x,< --- <x,<f.

This set of generalized convex functions is a convex cone and is denoted
by C(uy, .., u,_,). Generalized convex functions enjoy certain differen-
tiability properties as described in [5, 1]. In particular, their (n—2)nd
derivatives are continuous. If we define

1 1 1
r =—D*—D-.-D—
(0 @; a,

then, for ¢ € C(ug, ..., u,_,), L, ¢ is right-continuous and nondecreasing
and L,_,o is left-continuous and nondecreasing. To a generalized convex
function ¢ we may associate a nonnegative, regular Borel measure u on
(a, B) by setting u([c,d])=L;} o(d)—L,_,¢(c)=0. Then on any
interval [a, b] < (a, f) we have the representation

oR)=ux)+[ K 0duln),  xelab], (1)

with

n—2

u(x)= Y, (L) @)u(x)+(L,_ @)a)u,_(x),
i=0

H

and K, as defined below. This representation may be extended to all of
[a, B) only if both of LE ¢ are bounded in («, ). However, the set of
generalized convex functions with such representations on [a, f] is
(uniformly) dense in C(ug, ..., u,_,) [5].
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DeriNITION 2. Let fe L ([, 8] and ge Clug, ..., 4, )N L([a, B] be
given. Then g is a best L,-approximation for f from C(uy, ..., 4, _ () if

=gl =] 170)—g0e) dv =inf {1/~ 0): @ & Clta, . 1)}

The concept of the “dual system” to an ECT-system will be important in
our considerations. The dual system is a basis for the nullspace of the
formal adjoint of L, which is given by L*=(—1)"(1/w,)D--(1/w,)D,
D :=d/dst. One such basis is

uf(t)=1,

ut(=] (&) de,

b
L O y(E_ () dEy_ e dEy.

n—2

b b
u*n_ t)y= w N
(0= @) ]
Now {ug, .., u¥_,} is an ECT-system, but not an ECT *-system; however,
it may be transformed by a change of basis into the following (dual)
ECT *-system:

os=] @) [ [ o (G

a

Both of these dual systems play a role in the proof of Theorem 1.
In order to introduce the notion of Chebyshevian spline, we first define

the fundamental kernel, the Green function for L([9], £5]):

En—1

K(x0=0,00 [ 0, e 0 [ [T de e, s

t

=0, t>x.

A Chebyshevian spline is a function of the form

k+1

s(x)=u(x)+ Z aiKn(x, ri)5 (2)
i=0

1
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with knots a<t,< -+ <74, ,<f and weU. Like polynomial splines,
Chebyshevian splines are (n — 2)-times continuously differentiable and have
jump discontinuities in the (n—1)st derivative at the 7, (provided the
corresponding «;, is not zero).

THEOREM 1. Let w;, u;, and (o, B) be as above and let g€ C(ugy, ..., ,_1)
be given. If [a, b] is contained in (o, B) then there are Chebyshevian splines
s and 5 on (a, B), such that if e Clug,..,u,_,) coincides with g in
(o, B)\(a, b) then

sxX)<o(x)<5(x), xela bl

These extremal splines have the form (2) with
n-—2
u(x)= 3 (L, g)a)u(x)+ (L, g)a)u,_,(x).
i=0

Furthermore, s and § are unique in [a, b] and we have:

n even: For 5, k=n/2—1, a=1,<1,< -+ <Tp . =b; for s, k=n/2,
a<‘L’1<---<‘L'k<b, O(0=Ock+,=0;

n odd: For 5,k=(n—1)/2, a=1o<t,< -+ <1 <b, a,,,=0; for
Sk=m—-1)2,a<t,< - <74, =b, ay=0.

The Chebyshevian splines s and § will be referred to as lower and upper
extremal splines, respectively. Thus, s and § form the boundary of the
“interpolating envelope” on [a, b] of generalized convex functions that
agree with g outside of (a, b).

ExampLes. For n=2 and w,=1, a generalized convex function g is
convex in the usual sense. In this case the upper extremal spline § for an
interval {a, b] is just the linear polynomial interpolant, and the lower
extremal spline s is the piecewise linear function with at most one knot,
which agrees with g at the endpoints and satisfies s'(a)=g"(a),
s'(b)=g', (b). The interpolating envelope in this case is, thus, a triangle
(see [3]).

In the next example, n=3, w;=1, and [a,b]=[—1,1], so that
U=span{l, (x+1), (x+1)*/2} and g(x)=x>—x is generalized convex
(“3-convex”). The upper and lower extremal splines in this case are
quadratic polynomial splines with two knots each. Figure 1 shows s and §
restricted to [ —1, 1].

Proof of Theorem 1. 1f ¢ agrees with g outside of (a, b) then ¢ may be
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Fic. 1. Example of an interpolating envelope for n=3.

represented as in (1) with u as in the statement of the theorem, and with
u satisfying

| uws@dun=[ 1dut)=p(la,b))=Li gb)~L;_,gla). ()
[a,b] [a.b]
Moreover,
[ wrandun=] (LK) 1) du(r)
[a,b] [a.b]
=L p—u)(b)=L{g—u)b) (i=0,.,n-2)

Thus, this interpolation problem may be transformed into a moment
problem for the dual ECT *-system {vg, ..., v, }:

jb vlt)du(t)=¢c, (i=0,.,n—1). (4)

Let M. denote the set of nonnegative Borel measures for which the
moment conditions (4) are satisfied. Since an ECT-system is also a
Chebyshev system, by the Markov-Krein Theorem [5, 6, 7] there are
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unique extremal measures g and j in M, such that for all e M, and all
W € C(U07 ey vn—l)

[ wodn<| ywdun<| v dao. (5)
[a, 8] [a,b] [a,b]

These extremal measures are discrete measures with mass distributed as
follows:

n even: j has mass at a and at b, and at k=n/2—1 intermediate
points; u has mass only at k = n/2 intermediate points;

n odd: 7 has no mass at g, and has mass at b and at k=(n—1)/2
intermediate points; y has no mass at b and has mass at a and at
k = (n—1)/2 intermediate points.

It should be mentioned that these conclusions are valid provided u has
sufficient number of mass points (“index n” [6]); otherwise, g is a spline
on [a, b] and s, § and g all coincide.

Functions y € C(v,, ..., v,,_,) have the representation

Vo=ow+[ (1K 0du), e lab],

with vespan{vy,..,v,_,} and p a nonnegative Borel measure. In
particular, for fixed x the function ¥(¢) :=(—1)"K,(x, t) is an element of
C(vgy - Vy_) and therefore (5) holds. The proof is now completed by
adding (—1)"u(x) to each term of (5) and setting

s =ux)+ [ Kn0dun,  Sx)i=u)+ | K% 1) di)
[a,b] [a,b]
if n is even, and vice versa if n is odd. |

Remark 1. 1t can be shown that the knots of s and § strictly interlace.

A simple consequence of (1) and the definition of K, is the following
estimate:

PROPOSITION 1. Let the conditions and conclusions of Theorem 1 prevail.
Then, for all a<r<q<b and xe[r, q],

0<§(x)—§(x)<K-(g(—n::_)1n-)_Ti,-lj1 "

where K=L, | g(b)—L,_,g(a)< o and m;=max,, |/
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We now prove the main theorem of this paper.

THEOREM 2. Let f be continuous in (a, ) and let g be generalized convex
on (a, B) with respect to {ug, ... u,_}. If g is a best L-approximation to f
then in every closed subinterval I of (o, B) there exist disoint open sets E |, E,
such that g<f and g is an upper extremal Chebyshevian spline on each
connected component of E,, g>f and g is a lower extremal Chebyshevian
spline on each connected component of E,, and g=fin I\(E, v E,).

Proof. Let (a, b) be a connected component of the (relatively) open set
In{f>g} and let [¢,d] =(a, b) be arbitrary. Let u[c,d] denote the
generalized convex function that coincides with the upper extremal spline
§ for g on [c, d] and equals g outside of [¢, d]. For 1>0 set

g,:=01—-4)g+ iulc, d].
Thus, g; =g outside of [¢, d]. We have
0<g,—g=Aulc, d]—g,

hence for small enough 4 we have f>g, > g in [c, d]. If there exists a point
ye[c,d] such that ulc, d](y)>g(y), then | f~g;l,<[f—gll,, a con-
tradiction to the assumption that g is a best approximation. The proof is
completed by applying an analogous argument to connected components

of In{f<g} 1

Remark 2. Suppose that the w, are bounded. If f is bounded then its
best approximation g must be bounded as well. Otherwise, by extrapola-
tion of g to an endpoint by an element of U we can construct a closer
approximation to f.

We close with a few comments. For the case when all w, are constant
(polynomial case), a description of the upper and lower extremal splines
was given by Popoviciu [8]. The extremal splines that form the interpolat-
ing envelope for a sequence of distinct points in the general case were
described by Burchard [2,1]. In this case moment theory for weak
Chebyshev systems is needed (see also [77). Thus, our technique in prov-
ing Theorem 1 cannot be considered new. Our proof is, however, made
somewhat shorter than previous ones by using the precise results from
moment theory expounded in [6]. Outside of the preliminary findings in
{3, 10], we are unaware of results similar to Theorem 2 in the literature.

We have not considered the problems of existence and uniqueness in this
paper. Based on our experience with convex and n-convex functions, we
conjecture that every function, continuous on a compact interval, has a
unique, continuous best generalized convex L -approximation.
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